3.4.18 \(\int \frac {x^2}{(a+b x^3)^2 (c+d x^3)^{3/2}} \, dx\)

Optimal. Leaf size=108 \[ -\frac {d}{\sqrt {c+d x^3} (b c-a d)^2}-\frac {1}{3 \left (a+b x^3\right ) \sqrt {c+d x^3} (b c-a d)}+\frac {\sqrt {b} d \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{(b c-a d)^{5/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {444, 51, 63, 208} \begin {gather*} -\frac {d}{\sqrt {c+d x^3} (b c-a d)^2}-\frac {1}{3 \left (a+b x^3\right ) \sqrt {c+d x^3} (b c-a d)}+\frac {\sqrt {b} d \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{(b c-a d)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

-(d/((b*c - a*d)^2*Sqrt[c + d*x^3])) - 1/(3*(b*c - a*d)*(a + b*x^3)*Sqrt[c + d*x^3]) + (Sqrt[b]*d*ArcTanh[(Sqr
t[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(b*c - a*d)^(5/2)

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (a+b x^3\right )^2 \left (c+d x^3\right )^{3/2}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{(a+b x)^2 (c+d x)^{3/2}} \, dx,x,x^3\right )\\ &=-\frac {1}{3 (b c-a d) \left (a+b x^3\right ) \sqrt {c+d x^3}}-\frac {d \operatorname {Subst}\left (\int \frac {1}{(a+b x) (c+d x)^{3/2}} \, dx,x,x^3\right )}{2 (b c-a d)}\\ &=-\frac {d}{(b c-a d)^2 \sqrt {c+d x^3}}-\frac {1}{3 (b c-a d) \left (a+b x^3\right ) \sqrt {c+d x^3}}-\frac {(b d) \operatorname {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )}{2 (b c-a d)^2}\\ &=-\frac {d}{(b c-a d)^2 \sqrt {c+d x^3}}-\frac {1}{3 (b c-a d) \left (a+b x^3\right ) \sqrt {c+d x^3}}-\frac {b \operatorname {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{(b c-a d)^2}\\ &=-\frac {d}{(b c-a d)^2 \sqrt {c+d x^3}}-\frac {1}{3 (b c-a d) \left (a+b x^3\right ) \sqrt {c+d x^3}}+\frac {\sqrt {b} d \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{(b c-a d)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 54, normalized size = 0.50 \begin {gather*} -\frac {2 d \, _2F_1\left (-\frac {1}{2},2;\frac {1}{2};-\frac {b \left (d x^3+c\right )}{a d-b c}\right )}{3 \sqrt {c+d x^3} (a d-b c)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

(-2*d*Hypergeometric2F1[-1/2, 2, 1/2, -((b*(c + d*x^3))/(-(b*c) + a*d))])/(3*(-(b*c) + a*d)^2*Sqrt[c + d*x^3])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.24, size = 110, normalized size = 1.02 \begin {gather*} \frac {-2 a d-b c-3 b d x^3}{3 \left (a+b x^3\right ) \sqrt {c+d x^3} (b c-a d)^2}+\frac {\sqrt {b} d \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3} \sqrt {a d-b c}}{b c-a d}\right )}{(a d-b c)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^2/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

(-(b*c) - 2*a*d - 3*b*d*x^3)/(3*(b*c - a*d)^2*(a + b*x^3)*Sqrt[c + d*x^3]) + (Sqrt[b]*d*ArcTan[(Sqrt[b]*Sqrt[-
(b*c) + a*d]*Sqrt[c + d*x^3])/(b*c - a*d)])/(-(b*c) + a*d)^(5/2)

________________________________________________________________________________________

fricas [B]  time = 1.47, size = 450, normalized size = 4.17 \begin {gather*} \left [\frac {3 \, {\left (b d^{2} x^{6} + {\left (b c d + a d^{2}\right )} x^{3} + a c d\right )} \sqrt {\frac {b}{b c - a d}} \log \left (\frac {b d x^{3} + 2 \, b c - a d + 2 \, \sqrt {d x^{3} + c} {\left (b c - a d\right )} \sqrt {\frac {b}{b c - a d}}}{b x^{3} + a}\right ) - 2 \, {\left (3 \, b d x^{3} + b c + 2 \, a d\right )} \sqrt {d x^{3} + c}}{6 \, {\left ({\left (b^{3} c^{2} d - 2 \, a b^{2} c d^{2} + a^{2} b d^{3}\right )} x^{6} + a b^{2} c^{3} - 2 \, a^{2} b c^{2} d + a^{3} c d^{2} + {\left (b^{3} c^{3} - a b^{2} c^{2} d - a^{2} b c d^{2} + a^{3} d^{3}\right )} x^{3}\right )}}, \frac {3 \, {\left (b d^{2} x^{6} + {\left (b c d + a d^{2}\right )} x^{3} + a c d\right )} \sqrt {-\frac {b}{b c - a d}} \arctan \left (-\frac {\sqrt {d x^{3} + c} {\left (b c - a d\right )} \sqrt {-\frac {b}{b c - a d}}}{b d x^{3} + b c}\right ) - {\left (3 \, b d x^{3} + b c + 2 \, a d\right )} \sqrt {d x^{3} + c}}{3 \, {\left ({\left (b^{3} c^{2} d - 2 \, a b^{2} c d^{2} + a^{2} b d^{3}\right )} x^{6} + a b^{2} c^{3} - 2 \, a^{2} b c^{2} d + a^{3} c d^{2} + {\left (b^{3} c^{3} - a b^{2} c^{2} d - a^{2} b c d^{2} + a^{3} d^{3}\right )} x^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^2/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

[1/6*(3*(b*d^2*x^6 + (b*c*d + a*d^2)*x^3 + a*c*d)*sqrt(b/(b*c - a*d))*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^
3 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^3 + a)) - 2*(3*b*d*x^3 + b*c + 2*a*d)*sqrt(d*x^3 + c))/((b^3*c^2*
d - 2*a*b^2*c*d^2 + a^2*b*d^3)*x^6 + a*b^2*c^3 - 2*a^2*b*c^2*d + a^3*c*d^2 + (b^3*c^3 - a*b^2*c^2*d - a^2*b*c*
d^2 + a^3*d^3)*x^3), 1/3*(3*(b*d^2*x^6 + (b*c*d + a*d^2)*x^3 + a*c*d)*sqrt(-b/(b*c - a*d))*arctan(-sqrt(d*x^3
+ c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^3 + b*c)) - (3*b*d*x^3 + b*c + 2*a*d)*sqrt(d*x^3 + c))/((b^3*c^2*
d - 2*a*b^2*c*d^2 + a^2*b*d^3)*x^6 + a*b^2*c^3 - 2*a^2*b*c^2*d + a^3*c*d^2 + (b^3*c^3 - a*b^2*c^2*d - a^2*b*c*
d^2 + a^3*d^3)*x^3)]

________________________________________________________________________________________

giac [A]  time = 0.21, size = 153, normalized size = 1.42 \begin {gather*} -\frac {b d \arctan \left (\frac {\sqrt {d x^{3} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {-b^{2} c + a b d}} - \frac {3 \, {\left (d x^{3} + c\right )} b d - 2 \, b c d + 2 \, a d^{2}}{3 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} {\left ({\left (d x^{3} + c\right )}^{\frac {3}{2}} b - \sqrt {d x^{3} + c} b c + \sqrt {d x^{3} + c} a d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^2/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

-b*d*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(-b^2*c + a*b*d)) - 1
/3*(3*(d*x^3 + c)*b*d - 2*b*c*d + 2*a*d^2)/((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*((d*x^3 + c)^(3/2)*b - sqrt(d*x^3
+ c)*b*c + sqrt(d*x^3 + c)*a*d))

________________________________________________________________________________________

maple [C]  time = 0.25, size = 485, normalized size = 4.49 \begin {gather*} \frac {i b \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {\left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (2 \RootOf \left (\textit {\_Z}^{3} b +a \right )^{2} d^{2}+i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (\textit {\_Z}^{3} b +a \right ) d -\left (-c \,d^{2}\right )^{\frac {1}{3}} \RootOf \left (\textit {\_Z}^{3} b +a \right ) d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}-\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {\left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (\textit {\_Z}^{3} b +a \right )^{2} d +i \sqrt {3}\, c d -3 c d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \RootOf \left (\textit {\_Z}^{3} b +a \right )-3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \RootOf \left (\textit {\_Z}^{3} b +a \right )\right ) b}{2 \left (a d -b c \right ) d}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{2 d \left (a d -b c \right )^{3} \sqrt {d \,x^{3}+c}}-\frac {\sqrt {d \,x^{3}+c}\, b}{3 \left (a d -b c \right )^{2} \left (b \,x^{3}+a \right )}-\frac {2 d}{3 \left (a d -b c \right )^{2} \sqrt {\left (x^{3}+\frac {c}{d}\right ) d}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b*x^3+a)^2/(d*x^3+c)^(3/2),x)

[Out]

-1/3/(a*d-b*c)^2*(d*x^3+c)^(1/2)/(b*x^3+a)*b-2/3/(a*d-b*c)^2/((x^3+c/d)*d)^(1/2)*d+1/2*I*b/d*2^(1/2)*sum(1/(a*
d-b*c)^3*(-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-
(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)
+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-
(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/
3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),1/2*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*
d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/(a*d-b*c)*b/d,(I*3^(1/2)*(-c*d^
2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*b+a))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^2/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c positive or negative?

________________________________________________________________________________________

mupad [B]  time = 7.43, size = 199, normalized size = 1.84 \begin {gather*} -\frac {\left (\frac {3\,b\,d\,\left (a\,d+b\,c\right )-b\,d\,\left (a\,d+2\,b\,c\right )}{3\,\left (a^2\,b\,d^3-2\,a\,b^2\,c\,d^2+b^3\,c^2\,d\right )}+\frac {b^2\,d^2\,x^3}{a^2\,b\,d^3-2\,a\,b^2\,c\,d^2+b^3\,c^2\,d}\right )\,\sqrt {d\,x^3+c}}{b\,d\,x^6+\left (a\,d+b\,c\right )\,x^3+a\,c}+\frac {\sqrt {b}\,d\,\ln \left (\frac {a\,d-2\,b\,c-b\,d\,x^3+\sqrt {b}\,\sqrt {d\,x^3+c}\,\sqrt {a\,d-b\,c}\,2{}\mathrm {i}}{b\,x^3+a}\right )\,1{}\mathrm {i}}{2\,{\left (a\,d-b\,c\right )}^{5/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x)

[Out]

(b^(1/2)*d*log((a*d - 2*b*c + b^(1/2)*(c + d*x^3)^(1/2)*(a*d - b*c)^(1/2)*2i - b*d*x^3)/(a + b*x^3))*1i)/(2*(a
*d - b*c)^(5/2)) - (((3*b*d*(a*d + b*c) - b*d*(a*d + 2*b*c))/(3*(a^2*b*d^3 + b^3*c^2*d - 2*a*b^2*c*d^2)) + (b^
2*d^2*x^3)/(a^2*b*d^3 + b^3*c^2*d - 2*a*b^2*c*d^2))*(c + d*x^3)^(1/2))/(a*c + x^3*(a*d + b*c) + b*d*x^6)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b*x**3+a)**2/(d*x**3+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________